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SURFACE TENSION AND VISCOSITY WITH LAGRANGIAN i
HYDRODYNAMICS ON A TRIANGULAR MESH -
: A :::i
I. Introduction :E'f
y In principle, a Lagrangian formulation of the hydrodynamics equations is partic- o
ularly attractive for numerical calculations. Each discretized fluid element is tracked ‘;.',
as it evolves through the interaction with its changing environment and with external .1::
forces. The local interactions can be represented without nonphysical numerical diffu- ‘:"‘.‘E
sion. Conservation laws are simple to express since there are no fluxes out of the fluid
element boundaries. The paths of the fluid elements are themselves a flow visualiza- :':‘:‘
tion. It thus appears to be the natural approach to transient hydrodynamics with free :E:‘:
surfaces, interfaces, or sharp boundaries. 8
In practice, the use of Lagrangian methods in numerical simulations has generally 7]
been restricted to “well-behaved” flows. Shear, fluid separation, or even large amplitude X
motion produce severe grid distortion. These distortions arise because grid points can | 2’
move far enough that their near-neighbors change in the course of a calculation. When >
differential operators are approximated over a mesh which is distorting, the approx- .':
imations may become inaccurate. Attempting to regain accuracy through regridding :E
and interpolating physical quantities onto the new grid introduces numerical diffusion ‘:"‘
into the calculation. 0
This paper is a summary and update of the latest additions and modifications g
e
to a numerical technique for indefinitely extending Lagrangian calculations by using :‘,:\
a restructuring triangular mesh, first introduced by Fritts and Boris [1]. The major 3
advance of this approach is that the grid automatically adapts and refines itself to main- ::‘
tain accuracy for discretized operators in a manner that is nondiffusive. The algorithms ::E
have been implemented in the code SPLISH, which has been applied to calculations :;‘
of nonlinear waves (2, 3|, flows over obstacles [4], Kelvin-Helmholtz instabilities [5], ‘-
Rayleigh-Taylor instabilities [6], Couette flows and Taylor vortex flows [7]. :’2
. Work on Lagrangian techniques for grids which do not have fixed connectivity ‘.(g;
has recently had a renaissance. Early attempts included the PANACEA code (8] and ‘

the PAF (Particle-And-Force) algorithm [9, 10]. In the 1970’s, these concepts were
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improved and extended for triangular grids: triangle reconnection by Crowley [11];

- - »

MHD algorithms over a triangular mesh [12]; and adaptive triangular meshes in the

work mentioned in the previous paragraph on SPLISH. During the same period work

began which used Voronoi meshes for hydrodynamics calculations {13].

-
o,

Recently this use of general connectivity grids has rapidly expanded, as summa-

>

rized in the First International Conference on Free-Lagrange Methods [14]. Applica-

tions now include finite-difference and finite-element calculations of classic hydrody-

- A

namic instabilities, tokamak modelling, high temperature plasma physics, heat con-

T X

duction, wave-structure interactions, impact deformations, and hydrodynamics prob- o

lems for both compressible and incompressible fluids. Free-Lagrange methods now use
quadrilateral, triangular and mixed meshes in two dimensions, tetrahedral meshes in

three dimensions, Voronoi meshes in both two and three dimensions, and methods

R R = = S

! which are mesh-free.

In this paper we present the latest modifications to SPLISH (section II). These

include the most recent version of the rotation operator, which conserves circulation,

and the residual algorithm, which ensures conservation of the area of cells. We also

- U

introduce new algorithms for viscosity and surface tension. Including viscosity proved
to be straightforward (section II). However, the search for a good enough algorithm o
for surface tension (section III) was more challenging and difficult. The basic problem
is defining a proper curvature from a finite number of points. Because of this, the Y
numerical approximation of surface tension forces between two fluids is conceptually
quite different from approximations of convection and viscous forces. The final formu- 5
lation chosen, a series of test problems, and a list of approaches that failed are detailed

(section III). Finally, we combine the convective transport, surface tension, and vis- W
cosity algorithms to perform some preliminary calculations of flows in and around a !
viscous kerosene droplet. These calculations show vortex shedding behind the droplet,

distortion of the droplet due to the shear flow, and internal droplet flows.

-
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II. Basic Elemants of Lagrangian Triangular Grids

This section is a review of the derivation of low order finite-difference approxi-
mations to the equations describing incompressible fluid motion for general triangular
grids. Some of the material was originally presented by Fritts and Boris [1], and the
interested reader is referred there for more detail. However, new material brings the
previous paper up to date. This includes the lastest version of the rotation operator,
which conserves circulation, the residual algorithm, which ensures conservation of the

area of cells, and the new algorithm for viscosity.

A. The Triangular Grid

Consider a two-dimensional space which is divided into triangular cells. A section
of this mesh shown in Fig. 1, which shows an interface between fluid type I and fluid
type II. In Fig. 1a, a particular triangle j is highlighted by heavy lines and the various
components of the triangle are labeled. Three vertices, V3, V5, and V3, are connected
consecutively by sides S, S2, and S3. The direction of labeling around each triangle
is counterclockwise and the z axis is directed out of the page. Since the mesh can be
irregularly connected, an arbitrary number of triangles can meet at each vertex.

We can define a cell surrounding a vertex, as shown in Fig. 1b, by the shaded
region surrounding V3. The borders of such vertex-centered cells are determined by
constructing line segments joining the centroid of each triangle with the midpoints of
the two triangle sides connected to the vertex, for all triangles surrounding that vertex.
This definition of a vertex cell equally apportions the area of a triangle to each of
its three vertices and provides a simple, efficient way to evalue the finite difference
operators. However, the definition of a vertex cell is arbitrary. Other definitions could
be equally well employed, although they generally require additional calculations to
determine cell intersection points. The integration of cell quantities may therefore

involve more arithmetic operations for other definitions.
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B. Finite Differences on a Triangular Grid

Finite-difference approximations for derivatives of functions defined on the trian-
gular grid are derived from the expressions for the integral of the gradient of a scalar

funtion, f, and the divergence and curl of a vector field, v, in two Cartesion dimensions.

/VfdA:ff dl x 3 (2.1)
/ V-vdA = f - (dl x 2) (2.2)
/ V x vdA = }{ v-dl 2 (2.3)

In each of these expressions, A is the region enclosed by the curve C and dl is the
vector arc length around C in the counterclockwise direction. The variable Z is a unit
vector in the direction of the ignorable coordinate. By using these definitions in a
conservative integral approach, the definitions for spatial derivatives described below
can be naturally extended to two-dimensional axisymmetric geometry (7).
Throughout the following discussion a triangle-centered quantity is assumed to be
piecewise constant over the triangles with discontinuities occurring at the triangle sides
and a vertex-centered quantity is assumed to be piecewise linear over the triangles. If
we want to form a triangle-centered derivative, we use the triangle as the area A and
the sides of the triangle for the curve C in Eqs. (2.1)-(2.3). We then approximate
the area integral by the area of the triangle times the value of the derivative on the
triangle, and approximate the line integral using the trapezoidal rule on each side of
the triangle. For example, the gradient of a scalar function f defined at the vertices is

a triangle-centered quantity, (V f);, given by

A;j(Vf)j= Zf- (ric1 = rig1) x 2, (2.4)
'(J)

where r; = (z;,¥:) is a vector coordinate for vertex i and A4; is the area of triangle ;.

We have also used the notation of Fritts and Boris [1] that 3, ., is interpreted as the

g - iy o .
ot 2 B e
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sum over vertices i of triangle j. In the material presented below, the index i designates “ :

l\ '

vertex-centered quantities and the index j designates triangle-centered quantities. o

If we want to form a vertex-centered derivative, we use the vertex-centered cell et

as the area 4. We approximate the area integral on the left side of Eq. (2.1)~(2.3) :
L

by the area of the vertex-centered cell times the value of the derivative at the vertex. ‘:::

0¥

We approximate the line integral using the value on each triangle and the appropriate E::

vector length through the triangle. For example, the curl of the vector field v at a .

vertex c is approximated by y o

1 :.

\l

A(V xv) = 3 Z"i+l/2 (rig1 — 1) 2, (2.5) ¢

i(c) a

t,

¢

where 4. = } 2_j(e) A is the vertex-centered cell area, 3~ ) is a sum over the triangles ::z
\

around the central vertex ¢, 3_, ., is a sum over the vertices around vertex c, and v,/ o

(]

is the value of the vector field v on the triangle having vertices c, i, i + 1. Similarly, s

the divergence of the vector field v at a vertex is approximated by ‘:;L'

1 . ‘},

Ac(V . V)c = E Z[V.'.“/z X (l'.'.H - r.-)] * 2. (25) “‘;

i(c) .

;l‘..

R

. ';.

C. The Equations for Incompressible, Inviscid Flow :E:
The basic equations for inviscid incompressible hydrodynamics are ‘

v;"

dp i,

—=0 2.7 '

dt ’ 2.7) .',:,

V.v=0, (2.8) "
dv )

P +Vp="*.,. (2.9) T

¢

)

In two dimensions the fluid density p, pressure p, and velocity v are assumed to vary :gj
with z, y, and t. The term “, represents external forces applied to the fluid, for example, )
)

o

¥
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forces due to gravity. Equation (2.8), the condition for incompressibility, removes the

sound waves.

Since we want our finite difference approximation to preserve the conservation
properties for incompressible inviscid fluids, it is important to consider which of the
physical variables, p, v, and p, should be defined as vertex-centered quantities and
which should be defined as triangle-centered quantities. We have found that prescrib-
ing velocities as triangle-centered quantities makes the formulation of conservation of
circulation straightforward. Prescribing the densities on triangles and pressures at
vertices allows conservation of vertex cell areas.

The time integration of velocities uses a second-order implicit split-step algorithm
which is solved by iteration. The vertex positions are advanced using a second-order
midpoint rule. Specifically, the velocities are advanced a half timestep, the grid is
advanced a full timestep, and then the velocities are advanced forward the other half
timestep. The complete algorithm is as follows. First compute the half-timestep trian-

gle velocities using
5t
2p;

where the superscript o designates the values at the old time step. We then make an

12

Vi

&t
=vj - E(Vp)f + —f., (2.10)

initial guess for the new triangle velocities

VO = M2
and iterate
Vi o S(v v, (2.11)
X = x? + otv /2, (2.12)
¢/ = R({x?}, {x]"*}) - v}/2, (2.13)

" - &t n ot
v = gk 25 (V9] kg, (2.14)
J

2p;




vy,

g X where the second superscript indicates the iteration number. The vertex velocity v.'-""
": in Eq. (2.11) is obtained from a weighted average of the triangle velocities v;"" for
~ those triangles having : as a vertex,
s;". - n

e vr = YY) (2.15)
1". [ Z o W ° '
G i) i
- We use w; = 0;p;A;, where 0; is the angle (in radians) of triangle j at vertex i divided
;::: by 7. The transformation R in Eq. (2.13) results from the requirement of conservation
K/
E:z‘ of circulation, and is discussed in Section D below.
DLl
’:::, The pressures {p}""} in Eq. (2.14) are derived from the condition that the new
. velocities {v;-'"‘} should be divergence-free at the new timestep, satisfying Eq. (2.8).
nh
“:‘: The pressure Poisson equation is derived from Eq. (2.14) by setting (V- v;)** =0 to
iy

:::E: obtain a pressure p}*, such that

G

' &t n,k 1/2,k ot

2 V. =—(Vp);):" = (VM. v/ 55y 4 (O™k . —f,), 1
i (V- s (TR = (V™4 vk (70 2t (2.16)
.},

::":.: Both terms in Eq. (2.16) are straightforward to evaluate, since the divergence is taken
L

et over triangle-centered quantities. Note also that the discrete gradient operator V must
N ~ also carry time advancement superscripts since it depends on the current grid location.
‘ C (See Eq. (2.4).) Two features of the Poisson equation, Eq. (2.16), are noteworthy. First,
it is derived from V2¢ = V - V¢, as in the continuum case. Second, the left-hand-side
’l ;.

results in the more familiar second-order accurate templates for the Laplacians (such

‘.0‘

g’ as the five-point formula) derived for homogeneous fluids and regular mesh geometries.
)

R
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D. Conservation of Circulation

The approach we have outlined is basically a control volume approach which uses
an integral formulation to derive the difference algorithms. Equation (2.13), which
produces conservation of circulation over vertex cell volumes, is a consequence of this
approach. It reflects numerically the fact that the triangle velocities must be altered
as the grid rotates and stretches. This process does not prevent the addition or loss of
vorticity due to external forces or changes in density at interfaces. Rather it corrects
any numerical errors that may arise because the grid has moved. Thus it guarantees
conservation of circulation at those vertices where the circulation theorem applies.

The transformation R is derived by considering the circulation about each vertex.
Since triangle velocities are constant over the triangle, the circulation taken about
the boundary of the vertex cell can be calculated from Eq. (2.5). The conservation
of vorticity then takes the form of the operator R which preserves the value of the
circulation about each vertex as the grid changes.

Conservation of circulation requires that at each timestep, and for each vertex, ¢,

Z‘.'.l-ﬁ/kz (g =) = Z":ﬁ/z iy — 1)) (2.17)

i(e) i(e)
For convenience in notation, we now drop the superscript 1/2 for the velocities and
the iteration superscript k£ appearing in Eq. (2.17). Since there ars two components
of velocity on each triangle, but only one constraint at each vertex. the form of the
rotator is underdetermined. Fritts and Boris [1] provided the additional constraints by
making each term in the circulation integral associated with a given triangle a conserved
quantity, and hence the sum in Eq. (2.17) remains unchanged. This means that for
each triangle j,

Vi (el —eN)=v (0 - r7), i=1,2,3. (2.18)

Although this approach conserves circulation, the following example shows that it is

much too restrictive.
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Consider an inviscid shear flow on the grid shown in Fig. 2a. Triangles above

y = 0 have a velocity v, = -1, and those below have a velocity v, = +1. If after

K one step the vertices have moved as in Fig. 2b, conservation of circulation through
Eq. (2.18) imparts a y-component to the velocities for those triangles bordering the
! shear. Although the circulation integral about each vertex in the grid is conserved, the

flow is now no longer independent of y.

To obtain a better formulation of the transformation R we must consider Eq. (2.17)
more carefully. Since Eq. (2.17) is linear in the unknowns {¥;}, we can obtain the change
in triangle velocities by considering the change produced by the movement of a single
vertex ¢, with coordinates r., and sum the resultant expression over all vertices. It is
reasonable to assume that the rotator should change only the velocities of the triangles

: which have ¢ as a vertex. As a result, conservation of circulation gives
Vitr72:(rg —rPig1) + Vi1 /2 (Pici = 1) = Vigr2- (Yo =rig1) +Viny 2 (ric1 —12) (2.19)

for each vertex : about c. We have used r; = r} = r? for those vertices which are
stationary. If only vertex ¢ moves, the cell area at vertex c is constant, so th .; vorticity
is conserved about vertex c as well. However, at all neighboring vertices, circulation,
not vorticity, is conserved. By introducing the notation

6vis172 = Vig12 = Vi 2

and

- T o
drc =r] ~r,

Eq. (2.19) may be rewritten as

6Viprp2 - (r7 —rig1) + 6vimypa - (Ticy = £7) = (Vg2 = Vig1)2) - Ore. (2.20)

. . ; » W g O . L AR
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Let us also decompose §v;,;/; into a component, t;4,/2, parallel to the side op-

K posite vertex ¢, and a component, n;4,/2, normal to the side opposite vertex ¢ by '
K
} writing
2 X (rig1 = i) Ti41 = I
. 0Vip1/2 = n; +t; —_— 2.21
: i+1/2 = Mk 2= VY Pepppy (2.21)

With this notation and using the equation for the area, 4,,,/;, of triangle i + 1/2,

24,4172 = 2 [(rig1 = 13) X (r7 = riga)), (2.22)
‘ ,
: Eq. (2.20) becomes f
3 24i41/2 (rig1 = ri) - (rg = riq1)
4 .l n" + 3 ) ¢ 4 t"

Irigs — 13| 12 [rig1 = il +1/2 .

1 {
R =24i-1/2 (ri = riz1) - (ricy = r?) ‘
! PR T P U i i el (2.23) '

i —rica] M2 v = £ 1z \

= (Vie1/2 = Vig1/2) - Ore.

-
-

Let N. denote the number of triangles (vertices) about an interior vertex c¢. The N,

! equations given by Eq. (2.23) for the 2N, unknowns {¢,;,,2} and {n,41/1} are linearly
" dependent. This can be seen by summing the equations, which produces the equation '
for the change in circulation about vertex ¢. The equation for the change in circulation
R at vertex c is a linear combination of the ¢,,,/2's, which is equal to zero. Since we want A
' the ¢;41/2's to be linearly independent, we can set t;,;/2 = 0 for all i. We still need :
4,
y another equation to determine the normal component for the change in velocities on '
the triangles. :;
\]
Let us for the moment write that equation as .
N. ¢
L]
Z Civ1/2Mit1/2 = b. (2.24) ¢
i=] :.
Using Eq. (2.23) with ¢,/ = 0 for all {, we can successively eliminate each n,,,/; for "
i=1,...,N. ~1in Eq. (2.24) until we arrive at an equation for nx_41/2. Since the .,
:
4
A
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numbering of the triangles and vertices is arbitrary, this expression is valid for each

triangle i + 1/2 by replacing ny, 4172 With n,41/2 and vy 4172 with vi,/2. The result
is that '

2 % (riy1 —1i)

Vig12 =
24i41/2 ,
Cit1/2{Ths1 — Tkl ] Chs1/2[Tk4+1 — Tkl
b- E v -V; . or _S_ )
[ 24412 (Vks12 +1/2) - bre /k(c) 24k41/2
(2.25)

Several alternatives are possible for Eq. (2.24). If we conserve divergence about the

vertex ¢, then
Cit1/2 = |rig1 — 1l
(2.26)
b=0.

The transformation R prescibed by Eq. (2.25) is time-reversible, hence Eqgs. (2.10)-
(2.14) are also reversible. The entire algorithm advances vertex positions and veloci-
ties reversibly while evolving the correct circulation about every interior vertex. This
technique is unique for Lagrangian codes, which usually either ignore conservation of
circulation completely or conserve circulation through an iteration performed simul-
taneously with the pressure iteration. With this method the circulation is conserved

exactly regardless of whether the pressures-have iterated to their final values.

E. Viscous Flows
Viscosity modifies Eq. (2.9), so that now

% +Vp=1f.+uViv. (2.27)

Discretization of the additional term in the momentum equation follows the same ap-

proach as the discretization of the other terms. Since the velocity is a triangle-centered
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quantity, we need a discrete vertex-centered gradient operator, and a discrete triangle-

centered divergence operator. Employing the same techniques as above we have

Ac(vf)c Z fc+l/2(rt+l = l'.) X z, (2-28)
I(C)

1 .
A(V-v)j =3 Y i x (riga = ric)] - 2. (2.29)
i(5)
The Laplacian is found by taking the divergence of the gradient.
The finite difference equations, Eqgs. (2.10) and (2.14), can be modified to account

for the additional term in the momentum equation by

5t it
vi/t=vi- 5;( Py + gt + LT (2.30)

ot
2p;

nk _ =1/2,k

vt =g/ --27(vp);.'"' f.+-1—(v"‘= vrkymE=ly o (231)
’ J

These equations are implicit in the velocities, just as the original Eqs. (2.10)-(2.14)

are. As in the inviscid case, we solve by iteration.

This algorithm was tested by calculating the spreading of a shear layer of initially
zero thickness given by

(v2,0),  for y > wo,

v(z,y,t =0) =< (0,0), for y = yo, (2.32)
(-vg,0), fory < wo,

where y, is the original location of the vortex sheet. The velocity distribution across

this layer evolves as

v(z,y,t) = £ v, erf [EZ_t)i%) (2.33)

where v = u/p. The width Ay of the layer grows as

Ay =~ 8(vt)'/2.
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For the test calculation the grid was initialized to center a vortex sheet in a grid

16 cells wide with an initial layer width of zero. The two opposing streams had initially
constant velccity profiles. The evolution of the interface between the streams was
governed by the same algorithms as the interior of either fluid, so that no special
interface boundary condition was used. The boundary conditions on the sides of the
computational region were periodic, and the top and bottom had free-slip boundary
conditions.

At the end of the calculation, the layer width agreed to within numerical roundoff
with the theory and the layer extended over the whole mesh. The velocity profile for
each stream coincided with that given by Eq. (2.33) to within round-off error. The
y-components of the velocity remained zero, indicating that the algorithm was working

well for the grid distortions presented by the problem.

F. Conservation of Vertex Cell Areas

Equations (2.10)—(2.14) are implicit in the triangle velocities {v;}. Because these
equations must be solved iteratively to produce a divergence free velocity field, a
small residual error may remain. In addition, vertex velocities are derived from the
divergence-free triangle velocities. In practice this means that vertex cell areas may
not be conserved. Furthermore, as the flow progresses, the triangle sides distort. Yet
at any given time we compute using straight triangle sides, which does not produce the
equivalent cell area about any given vertex. However, since we know what the triangle
area should be, it is possible to at least make a correction to the known error. Our
approach, then, is to perform an ad hoc correction step after all the vertices have been
advanced in time. This correction step moves the vertices in order to conserve vertex
cell area. After this vertex correction step, the rotator is applied to ensure that the
circulation has not been changed.

13
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To expand or contract a vertex cell area, we must expand or contract the surround-

ing triangle areas. Suppose we wish to expand a triangle ; with area A; and vertex

coordinates r; by an amount §A;. To do this we will move each vertex r;, an amount
Y —r; =6r; =d; (2 x (ri-1 = rig1)), (2.35)

that is, the vertices of the triangle are moved normally to the opposite side a distance
prescribed by the triangle expansion factor, d;. If d; is positive, the triangle area

increases. Using the vector definition for the area of a triangle, we have
20A; = 247" - 24,
= (337 = 7)) X (3] = wiRY)] - 2 = [(rig — ) X (ri = 1)) - 2
= [(rig1 = 1) X (8rimy = 6riq1)] - 2+ [(8riyr — 61i) X (ricy —rig1)] - 2 (2.36)
+ [(6rig1 = &) X (6riy = Orig)] - 2
= s*d; + 64;d3,

where s? is the sum of the squares of the sides of the triangle. This quadratic in the
expansion factor, d;, can be solved to yield

—32 + /o' +484;64;
dj = 124, . (2.37)
The sign in front of the square root was chosen to ensure d; has the same sign as 6A4;.

We relate the change in triangle area, §4;, to the conservation of vertex cell areas
throuéh

bA; = %f- Z AL;-& = Z %{—36&-, (2.38)
i(5) i)

where the sum is over the three vertices of the triangle, A; is the current area about ver-

tex i and Af is the original area about vertex i. Basically, the change in vertex cell areas

is apportioned to each contributing triangle according to that triangle’s contribution

to the vertex cell area.
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Although this residual correction is a small numerical effect, we have found that it

improves the overall results of a calculation. Because this algorithm expands triangles,
it has potential for modelling other physical processes. In a compressible algorithm
involving energy release and fluid flows with transit times which are small compared to

the energy release times, this algorithm could be used to produce the required expansion

of the vertex cells.

G. Grid Restructuring

In Lagrangian calculations the grid may distort to the point where grid restructur-
ing is necessary. The derivation of the reconnection and vertex addition and deletion
algorithms are done through the control volume approach and the use of triangle veloc-
ities. For all the algorithms used, the area-weighted divergence and curl taken about
each vertex are both identically conserved for grid reconnections and vertex addition.

The accuracy of a general triangular mesh is diminished by large obtuse angles
within triangles. With reconnections, accuracy can be recovered by ensuring that large
obtuse angles are preferentially eliminated. There are many ways of formulating a
reconnection algorithm. The one we have chosen is based on requiréments for solving
the pressure Poisson equation. The'pressure Poisson equation is formally equivalent to
that obtained by a piece-wise linear Rayleigh-Ritz-Galerkin finite element procedure
on a triangular grid. (See, for example [15].) Since we solve the equation by iteration,
we want the iteration to converge as rapidly as possible. Mathematically, convergence
is assured if the finite difference equation has a maximum principle: that is, all the
off-diagonal terms are negative, the diagonal term is positive and greater than or equal
to the absolute value of the sum of the off-diagonal terms, with strict inequality for at
least one equation. (That one equation typically involves boundary conditions. Qur

boundary condition prescribes the integrated pressure along the upper boundary.)
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To see how large angles affect the maximum principle, consider the difference
equation for vertex ! of Fig. 3a. The off-diagonal coefficient relating vertex ! to vertex
jis

a= --;—(cot 0~ + cot 8%) (2.39)

where 6+ and 6~ are the angles opposite the line from the vertex j to the vertex !
as shown in Fig. 3a. The other off-diagonal terms are determined in a similar man-
nerfrom the remaining edges eminating from vertex !. The diagonal coefficient is the
negative of the sum of the off-diagonal terms. For positive area triangles, 4+ and 6~
are both between 0 °and 180 °. Hence, each term in Eq. (2.39) is negative only when

g+t +6- > 180°, since
_ sin(6* +67)
~ 2sin@+sind- -

The reconnection algorithm ensures that the angles subtended by any given edge

(2.40)

sum to no more than 180 °. If 4%+ + 0~ is greater than 180 °, the grid line is reconnected
as shown in Fig. 3b. The new angles, #* and #'~, must sum to less than 180 ° since
(8% +0~ +0'* +6'") is the sum of the interior quadrilateral angles, which must be 360 °.
By chosing the diagonal which divides the largest opposing angles, the reconnection
algorithm preferentially eliminates large angles in triangles.

Interface sides are never allowed to reconnect. In such cases vertex addition algo-
rithms are needed. Vertex addition algorithms are also needed where the flow naturally
depletes vertices. For vertex addition, satisfaction of conservation integrals is partic-
ularly simple. The vertex added at the centroid of a triangle subdivides that triangle
into three smaller triangles. A vertex added to the midpoint of a side subdivides the
two adjacent triangles into four smaller triangles. If the new triangle velocities are all
the same as the velocity of the subdivided triangles, all conservation laws are satis-
fied. Since the reconnection algorithm is also conservative, subsequent reconnections

to other vertices ensure that the only effect of the addition is an increase in resolution.
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The case is not as obvious for vertex deletion. Reconnections can be used to
surround any interior vertex within a triangle. The vertex is then removed and the new

larger triangle given a velocity which is the area-weighted sum of the old velocities,
Avi=A,v, + Ajvi+ ApVe. (2.41)

Such a substitution redistributes circulation in accordance with area coordinates. Fig-
ure 4 illustrates the triangles before and after vertex removal. If {4 is the vorticity
about vertex 4 before it is removed, then the vorticity about each of the other three

vertices is increased by an amount (] given by

¢ = 4iC/A

G2 = Ale/Ar, (2.42)

(3 = AiG /A
where

G+G+G =20
since
Ai+ Aj + A = AL

Therefore, total vorticity is conserved and redistributed in a reasonable and natural

manner.
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II1. Surface Tension

A. The Algorithm

The surface tension at an interface between two materials depends on the curvature
of the interface. In the conventional numerical representation of surface tension, it is
cast into a finite-difference form by fitting vertices on the material interface to some
parametric function. This function is then used to find an estimate of local curvature.
Once the curvature is known, a surface tension force is evaluated and used to accelerate
interface vertices.

This scheme fails in SPLISH for two reasons. First, the interface vertices are
accelerated directly by surface tension forces evaluated on the vertices. Since velocities
are centered on triangles in SPLISH, the velocity field sees the effect of the acceleration
a half-timestep later, unless a secondary calculation is made. As a result, the pressure
calculated within the droplet is inconsistent with that found from the surface tension
formula. Second, since the pressure gradient forces and surface tension forces are not
calculated in the same manner, numerical errors result which grow with each timestep.

Both of these problems are eliminated by a different formulation of surface tension,
in which a surface tension potential is used to generate the forces. The surface tension
force is formulated as a gradient of a potential present only at the surfaces. With this
method, the pressure gradient forces are calculated in the same manner and on the same
grid as the forces derived from the surface tension potential. Therefore both the surface
tension potential and the pressure are dynamically similar, and the physical pressure
drop across the interface must exactly cancel the surface tension forces. Preliminary
aspects of this work were described by Fritts et al. [16, 17].

The finite-difference algorithms for surface tension are straightforward. The sur-
face tension forces are included through Laplace’s formula for the pressure jump across

an interface [18],

Pi —Po =0/R, (3.1)
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where p; is the pressure just inside the droplet at the interface, p, is the pressure

just outside the droplet at the interface, o is the surface tension coefficient associated
with the two media which define the interface, and R is the radius of curvature in the
two-dimensional plane. The radius of curvature is positive at points on the interface
where the droplet surface is convex (a circle is convex everywhere) and negative when
the surface is concave. These pressure jumps are included in the Poisson equation for
the pressure. The average pressure, (p; + p,)/2, is computed at the interface vertices.
From the average pressure and the pressure jump, we can compute a pressure gradient
centered on triangles, both inside and outside the surface. This pressure gradient is
used in the momentum equation.

The radius of curvature is computed from a parametric cubic spline interpolant to
the interface vertices. Past calculations of droplecs.oscillating due to surface tension
forces {19, 20] also use cubic spline interpolation. However, they divided the surface
into at least four segments (the top, bottom, right and left sides of the droplet) to
produce an interpolant on eé.ch segment. Each interpolant was matched at the joints
to produce an overall curve. The parametric interpolant used here does not require
this special matching.

The parametric spline is produced in the following manner. Denote the interface
vertices by r; = (z;,%), i = 1,...N, with ry = r;. Also define a pseudo arc length
parameter, s, such that the spline knots occur at the points

L) =0’

(3.2)
s.-=s.-_1+|r.~—r.-_1|, it=2,...,N.

We generate the twice differentiable periodic spline interpolants, r(s) = (z(s),y(s))
from the data {s;}, and {r;}, i = 1,...,N, as prescribed by DeBoor [21]. The
curvature is then given by

¢ xr'|

= R-} =
K=k ="p

(3.3)
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K where the prime indicates differentiation with respect to the parameter s. The sign of bl
R at an interface vertex, r;, is given by the sign of 2 - [(ri41 — r;) X (ri—1 — r;)].
We can iterate the process if necessary. From the spline fit we can generate new
values for the {s;} by integrating the expression for arc length along a parametrically !
) prescribed curve. For symmetrically placed vertices on a symmetric droplet, however, n"
we have found the iteration on arc length parameter is unnecessary. &
The parametric spline fit is also used for regridding. When the regridding algorithm
calls for the bisection of a triangle side which borders the two media, a new vertex is
added on the spline interpolant between the vertices. This is done rather than bisecting b

.)
the straight-line segment, since a straight-line bisection introduces spurious interface

; oscillations. Bisecting the spline maintains a better overall shape for the interface.

B. Test Results

We tested the algorithm for surface tension in SPLISH using two test problems. !

| The first test problem consists of internal capillary waves. In the second test problem

we calculated the oscillation of a droplet due to surface tension. For completeness we ol

also present calculations of internal gravity waves as a test of the overall hydrodynamic “
algorithms in SPLISH. :ﬁ_

;

1. Internal Gravity and Capillary Waves "
The linear theory for the small amplitude oscillation of an interface between two

fluids, bounded above and below by solid walls, gives the frequency w as a function of o
wavenumber k, ‘

2_ _(p—pgk+ok’ (3.1) "'

pcothkh + p' coth kh! 3

Here the upper fluid is of depth A’ and density p', the lower fluid is of depth h and
density p, g is the acceleration due to gravity and ¢ is the coefficient of surface tension

for the two media. Following the free-surface wave calculations of Fritts and Boris [1],

Y
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we take k = 27/A, A =25 cm, h=h'=10cm, p =2 g/cc, and p' = 1 g/cc. For an
internal gravity wave, we have g = 980 cm?/s and ¢ = 0 dynes/cm. For an internal !
capillary wave, we have g = 0 cm?/sec and o = 30 dynes/cm. These values give a
: period 7 = 27/w = 0.22073 s for the internal gravity wave and 7 = 0.50196 s for
the internal capillary wave. The amplitude of the oscillation is taken as A = 0.0672h. 5
For this amplitude the free-surface oscillations of Fritts and Boris {1] showed negligible ¢
non-linear effects. Figure 5 shows the initial grid for the mesh size §s = 0.125 cm.
Figure 6 shows the wave period as a function of mesh size for the internal gravity
wave problem. The ratio of timesteps for any two calculations was the same as that ;
for the mesh sizes. Each data point on the curve is an average over several periods and

is accurate to three digits. If we extrapolate to zero mesh size using a parabolic least-

E squares fit, 7 = 7o + bés + a(63)? to the data points, we obtain 7 = 0.2214, b = 0.0726, :::
1 and a = 0.1549 for this problem. The extrapolated value, g, is accurate to 0.3%. The

finite-difference derivatives given in section II are accurate to second order in the mesh ;

' size for triangular grids in which the centroid of a vertex cell is the vertex itself. The §~

] truncation error is linear in the distance between the vertex and the centroid of the g
' vertex cell. This truncation error can occur in this problem for vertex cells near the

interface in our discretization and hence the linear term in és in the above quadratic : "

expression. This linear term has a coefficient on the order of the wave amplitude which )

is the approximate distortion of the grid. The order of convergence for the algorithm .

is essentially quadratic with a small linear contribution. "

)

Figure 7 shows the wave period as a function of mesh size for the internal capillary
wave problem. Here the least-squares fit to the data gives 7o = 0.4995, b = 0.2198,
and a = 0.0640. The extrapolated period is accurate to 0.5%. With surface tension
included, the convergence is primarily linear in the mesh size. The reduction in rate of
convergence is i3 due to the use of cubic splines to calculate the curvatures. The cubic

b spline curve itself is fourth-order accurate, and theorems exist showing the second-order

L
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accuracy of its second derivatives. However, we know of no theorem giving the accuracy

of the combination of derivatives needed to produce the curvature in Eq. (3.3).

2. Droplet Oscillation.

As a futher test of the algorithm for surface tension in SPLISH, we calculated the
oscillation of a droplet due to surface tension. Rayleigh [22] derived a linear theory for
small amplitude oscillations on cylindrical jets that applies to the cylindrical droplets
we are discussing. He concluded that when the perturbation is totally in the plane
perpendicular to the axis of the cylinder, the frequency, w, for the oscillation is given
by

ag
wp = (n® - n) g © o (34)

where the surface of the droplet is given in polar coordinates by
r = a + ecos(nd), (3.5)

where p is the density of the jet, a is the unperturbed radius of the jet, and n prescribes
the mode of oscillation in the plane with amplitude . For large amplitude oscillations,
Rayleigh found that the experimental frequency diverged from that predicated by the
linear theory, and he attributed these differences to nonlinear effects.

We have extended Rayleigh’s theory to include the presence of an external fluid.
Equation (3.4) then becomes

(-4

(AT oo

w? = (n® - n)

where pq4 is the droplet density and p. is the density of the external fluid.

The tests of the surface tension algorithm consisted of a series of calculations of
oscillations initiated in the lowest oscillating mode, n = 2 in Eq. (3.6). Also, we have
chosen

a =0.0125 cm




- 9 " pa o ha’alhe bl :

Vofa ¥ §a% ' Ga® fat Bat fat BV fav St Bat 12° fat Get 827 027 L0 Ut o < Bet ig" e da li RyRrers Sar* Sa> pat 88" 0u 200" i Ba" U= P81 e’ St 50" be ahd’ale 200 a i o ..'
[

0

g = 30 dynes/cm,

values which are typical for many practical droplet problems. We discuss results for z;
two different sets of conditions. First we consider a droplet density of 2 g/cc in a T
background external fluid density of 1 g/cc. If we use the definition of the period as F
27 /w, Eq. (3.6) gives a period ..:
7=113x10""s. 2
The second set of conditions are for a kerosene droplet, with density 0.82 g/cc, in a :t
background of air, with density 0.0013 g/cc. This second case, with the 650:1 density y
ratio, is a stringent test of the numerical approximations. "‘
Figure 8 is a composite of frames from a calculation in which € = 0.2a = 0.0025 cm b
for the 2:1 density ratio case. In this calculation there are 17 vertices in each direction "::
along the exterior boundaries, 12 vertices on the droplet interface and a total of 313 !
vertices initially in the calculation. The computational domain is 0.1 cm on a side. The "
left and right boundaries are periodic while the top and bottom boundaries are solid :':':
walls. The timestep is 6t = 2.5 x 103 s. The figures shows four and a half oscillations ‘
of the droplet. We can see that as the calculation proceeds, no new vertices have been _
added, but in fact some have been subtracted. This was the case because the initial '::
gridding was adequate to represent the droplet shape. From these calculations, the N
period of oscillation is .
712 =135 x 1073 s. X
Similar calculations with 20 vertices surrounding the droplet (a 21x21 grid) show a E:
period of j_‘
70 =133 x 1070 s, 4

for 24 vertices surrounding the droplet (a 25x25 grid) we have a period of

794 = 1.31 x 1073 s,
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and for 28 vertices surrounding the droplet (a 33x33 grid) the period is
T2s = 1.27 x 1073 s,

In each case, the period does not change during the calculation. Figures 9 and 10 show
the initial oscillation for the more resolved cases. For these calculations, it was necessary
to decrease the timestep, as discussed below. The time step for the calculation with 12
vertices surrounding the droplet is such that the period cannot be resolved to better
than two digits. It appears that the calculations are not converging to the theoretical
value, but to a value of 1.19 + .06s, based on the graph of the computed period as a
function of mesh size shown in fig. 11. The convergence is essentially linear as it was
in the internal capillary wave test problem, but with a numerical error of about 5.5%
for this calculation.

Since the internal wave tests show much better convergence properties for the algo-

rithm, as do previous free-surface wave calculations (1, 2], than the droplet oscillation
test problem, we performed several other numerical tests on the droplet oscillation
problem to determine if the poorer convergence properties were due to other numerical
parameters.

Firstly, we tested whether the presence of boundaries a finite distance away could
alter the calculated period by performing calculations in a larger domain of length
0.2 cm. Here there were twice as many vertices on the boundary, but still only 12
vertices surrounding the droplet which was the same size as the droplets in the tests
described above. These calculations showed no change. in period, so we conclude that
the effects of periodic boundaries and reflecting walls are negligible.

It was also important to evaluate the possible effects of nonlinearity in the solution.
The theoretical value is from a linear analysis, and the calculation is a full nonlinear
calculation. It is possible that this could account for part of the discrepancy. To test
this, we performed calculations with smaller amplitudes, ¢, to see if there was any

difference in calculated period. The result was that the numerical value of the period
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was the same for ¢ = 0.01la = 0.000125 cm over the course of two oscillations as it was
for € = 0.2a. Our conclusion is that the calculations were in a range in which the linear
theory is valid.

We used two diagnostics to determine the period of the computed droplet oscil-
lation. One is the time history of the position of the rightmost vertex on the droplet

interface, denoted by z,.. The other diagnostic is the quadratic moment, defined by
<z’ >= /zzdz dy, (3.7)

where the integral is performed over the triangles which define the droplet. Tables I -
IV give the values of < r2 > and z, as a function of time for the resolutions of 12 and
24 vertices surrounding the droplet. From the maxima and minima in Tables I and III,
we can determine the period of oscilla;.tion. It is less well defined from the values of z,
in Tables II and IV. However, it never differs by more than two timesteps from that
given by the moments.

Finally, we examined the oscillations of a kerosene droplet in air. This calculation
tests the effects of the external fluid density on the numerical convergence of the pres-
sure algorithm as well as any role the external fluid may have in introducing higher
frequency modes. Here the theoretical value of the period is 5.9x 10~4 s. Using a resolu-
tion of 12 vertices around the droplet surface, we find a computed value of 7.1 x 10~* s.
The ratio between the theoretical and numerical results is 0.83, compared to a ratio
of 0.84 for the 2:1 density ratio calculation at the same resolution. Since changing the
density ratio from 2:1 to 650:1 did not alter the relative error, we conclude that only

minor errors arise by including of the external fluid in the calculation.
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C. Some Difficulties and Limitations ,
We now believe the that the inability of the method to produce as accurate a “
solution for the droplet oscillation test problem as for the internal wave test problems is ) 4
a combination of the physical problem itself and the spline approximations to curvature. : :;"
The surface tension algorithm discussed above suffers a basic problem in curve :::‘
fitting. We are trying to approximate an unknown continuous function by a known ’ '.'3'
curve through a finite number of points or computational cells. For example, we are iy
trying to represent the droplet interface or capillary wave interface by a spline fit to .:“
a finite number of points. Whereas an accurate interpolant can be found that goes !
through a set of points, it is not always clear that the other properties of the curve a
calculated at the points, e.g., the curvature, are well represented by this interpolant. '.j
Splines are notorious for introducing spurious oscillations between the points defining :.:::
them initially. f
Figure 12 shows the curvature at each vertex around the droplet. The exact g’
curvature for the initial drop is compared to the curvature produced by the spline ':',
interpolant and to curvatures produced after one oscillation is completed. The initial :::a

curvature, defined by splines on the interface vertices, is reasonable. However, by the >
end of a cycle, there are spurious oscillations even though the curvature has the same :.::;
basic shape. “,".
In the internal capillary wave problem, the range of values for the interface curva- ::‘
ture was a factor of 15 smaller than for the droplet oscillation problem. As a result the ::;(
interface curvature for the internal capillary wave is determined with greater accuracy. ::':E
In the droplet oscillation problem where the interface “bends” more sharply, the spline ::E’
has a greater difficulty approximating the curvatures accurately. “
Interpolations can cause other problems in the calculations. Our calculations have :‘:‘
shown that the final result can be affected by the location of additional vertices used 2‘
. to obtain a better initial approximation of the droplet interface. The grid initialization .:f:
procedure involves two phases: a first phase to generate a course grid, and a second ...
i‘,l:f
i
o
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::. : phase which refines the grid produced in the first phase. During the refinement phase,
- we have two chices for the location of new interface vertices. The initial grid produced
" in Fig. 8 placed new vertices on the droplet defined by the Rayleigh oscillation mode.
:,:“ : We could also add the vertex on the existing spline interpolant. Figure 13 shows < z? >
:):',’. as a function of time for the two types of initialization. The curve labelled 1 is the
EE:: calculation in which the additional vertices were placed on the Rayleigh drop. The
.';,. curve labelled 2 placed the additional vertices on the spline fit. After one oscillation,
); the value of < z2 > differs by 8%. After one oscillation the value of < z2 > on the
curve with label 1 is lower than the initial value of < z2 > and the value of < z% > on
e the curve with label 2 is higher than the initial value of < z? >. Notice also that the
N period, as well as the amplitude, is affected by the type of initialization.
h A In Fig. 8 we see that the amplitude of the droplet oscillation decays as a function
:', of time even though the period is not changing. The damping rate is about 18% per
. oscillation. The shape of the droplet at the end of the calculation is notably different
'\ than it was at that same place in an earlier oscillation cycle. In the ideal case, this
': would not occur.
"’ The ciecay of the oscillation is also apparent in the moment < z2 > and the
- variation in the location of z, from oscillation to oscillation. It is apparent from Fig. 14
: that the < z2 > moment is dissipating, and it is apparent from Fig. 15 that the overall
‘ shape of the droplet is changing. Energy associated with this lowest-mode oscillation
" is going into other modes, which is reflected in the reduction of the timestep required
.,_: to keep the computations stable. In general, to carry out these droplet oscillation
y :J calculations it was necessary to reduce the timestep to the point where we could resolve
il the highest mode of oscillation the droplet could support at a given resolution. When
:‘.;. we doubled the resolution around the droplet, we found that the timestep had to be
::- ) decreased by a factor of about about 2.8. This is consistent with the analysis which
::::! says that since the period is inversely proportional to n3/2, where n is the mode of
:
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oscillation. Increasing the resolution of the drdplet interface by a factor of 2 means
that the timestep must decrease by a factor of 23/2 ~ 2.8.

A physical mechanism for the observed decay in the n = 2 normal mode oscillation
is the existance of a resonance between the n = 2 and the n = 3 normal modes; that is
w3 = £2w3. A similar behavior in three dimensions has been analyzed by Natarajan and
Brown [23]. In their three dimensional analysis, significant energy can be transferred
from one resonant mode to another within ten oscillations.

In summary, the total damping rate for the droplet oscillation calculation is roughly
18% for the n = 2 mode. Much of the energy from this mode is transferred to higher
harmonics, as evidenced by the calculated droplet shapes, curvatures and the numerical
timestep limitations. The difference in initialization procedures alone produced an 8%
change in amplitude. Since the total numerical error is 5.5%, we conclude that the
majority of this error arises from the inability of the spline fit to approximate large
curvatures accurately. This error is large enough to mask other error contributions,
so that we cannot evaluate additional error terms other than to indicate that they are
apparently much smaller than that due to the spline fit.

However, despite all the problems with spline fits, we found that they provided a
good way to calculate curvature. In the search for better curvatures, we have also
tried other methods, none of which produced better results. We enumerate these
attempts both for completeness and to emphasize that better numerical approximations

for curvature are still needed to permit more accurate calculations of surface tension.

(1) We averaged the curvature between the vertices, such that

1 o541
Kiz= ————— / K(s)ds.

Si4+1 = Sia1

t=1
The results were found to depend sensitively how how the integral was actually
performed. However, integration produced results which were no better than the

pointwise curvatures discussed above.
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(2) We smoothed the curvatures I{; with a least squares linear spline. This method

worked well for one period, but the method failed on subsequent oscillations.

(3) We used a circular arc to calculate the curvatures. A circle was placed through
the three adjoining vertices. The radius of that circle was used as the radius
of curvature for the interface at the center vertex of the three vertices. This
method did not work at all. The droplet interface distorted wildly within the first
oscillation.

(4) We used splines under tension. This approach introduced a free parameter which
could not be consistently determined.

(5) Based on the experiences of Foote [20], we tried producing an interpolant through
every other vertex and averaging the result. The motivation was that fewer points
could introduce fewer oscillations, and that averaging the interpolants could damp
the oscillations. This produced poor results. The calculation is really the average
of two calculations with half the original accuracy.

(6) We considered but did not implement nonlinear éplina [24]. Although these splines
produce differentiable curvatures, there is no guarantee that there exists such a
spline through a given set of points and, if such a spline does exist, there is no
guarantee that it is unique.

(7) We considered several methods for calculating an interpolant based on the Rayleigh
modes. The high mode oscillations could then be eliminated. None of the
schemes we considered gave better results than the spline interpolant, and all
introduced arbitrary parameters into the calculation. These parameters could be
well-determined for a particular known shape, but could not be determined for a

general unknown shape.
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1 IV. Incompressible Flow about a Droplet

'y In this section we present some preliminary calculations of forced, asymmetric

drop oscillations induced by flow around a droplet. These calculations include both

" the effects of viscosity and surface tension. The capability of studying such flows for
5
N highly viscous droplets in shear flows, in two and eventually in three dimensions, is the
"
"

motivation for developing the viscosity and surface tension algorithms.

The initial conditions we used specified an initially steady-state potential flow
about a periodic series of cylinders. Again, the boundary conditions on the left and
> right sides are periodic, and the upper and lower boundary conditions are reflecting

walls. Initially, a perfectly circular droplet is at rest in a background flow. A physical
»V situation modelled by such an initialization might occur if the flow velocity were ramped
up to its final value before any significant structure could develop in the flow, and before
% the droplet could pick up any substantial velocity. Basically, it is a smooth start for the
X calculation. Previously we had performed calculations which began with an impulsive
start, but found that as a result there was a large amount of momentum transferred
acroes the droplet interface early in the calculation.

The calculations presented here model the forced fluid flow due to afast air stream
about an initially stationary kerosene droplet. The physical parameters, given in Ta-
1 ble V, are appropriate for a combustor environment. A total of 309 vertices were used
. to initialize the problem, with 12 vertices at the droplet interface. Figure 16 follows
" the evolution of pathlines in the internal and external flow fields through a series of
‘ timesteps. For an air velocity of 100 m/s and a droplet radius of 125 microns, the cor-
P responding Reynolds number is roughly 1600. The pathlines are defined by the paths

of vertices over five timesteps. By the last frame of Fig. 16, the fluid originally to the

i left of the droplet has progressed through the mesh and interacted with the face of the
(next) droplet.

The first clear indication of the development of the recirculation region is seen

in the fourth frame of Fig. 16, which shows a pair of counter-rotating vortices. The
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recirculation zone continues to develop throughout the calculation, although at times
the vortex pair is not as evident due to the deletion and addition of vertices, which
interrupts the continuity of the pathlines. By the last frame, another pair of vortices
is forming near the droplet, and the original pair has been shed. The leading face of
the droplet is now quite distorted, and the droplet is about to enter the wake of the
preceding droplet.

Distortions in the face of the droplet are evident in at least the seventh frame.
These distortions occur because the curvature has increased and the streamlines of
the streamlines in the external flow are condensed by the approaching wake. The
internal velocities are small compared to the external flow rates and therefore cannot
be distinguished as pathlines. However, indication of the (small) internal recirculation
may be obtained by comparing internal vertex positions at various timeteps.

Figure 17 shows the grid at times in the calculation corresponding to those in
Fig 16. During the course of the calculation, a great deal of vertex addition and deletion
has occured. Vertex addition, however, is most noticeable in the wake of the droplet
and around the droplet interface. Whereas there were 300 vertices at the beginning of
the calculation, there are 450 at the end.

Figure 18 shows the pathlines for a simulation with the air speed increased to 120
m/s, corresponding to a Reynolds number of 2000. The fluid now completely passes
through the mesh. The fluid initially near the droplet has completely passed the next
droplet by the time the calculation was terminated. The initial flow about the droplet
is similar to that shown above, except for a more pronounced flattening at the face
of the droplet due to the higher flow speed. The wake develops in much the same
manner, but it now interacts strongly with the flow at the forward stagnation point on
the droplet. Oscillations in the flow due to the wake are transmitted to the forward
face of the droplet and give rise to fairly large perturbations.

As seen in Fig. 19, the computational grid needs further refinement at this time

because the perturbations cannot be resolved by the limits set on minimum triangle
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size originally chosen for the calculation. A sign that the calculation is under-resolved -
is that one of the crests of the surface wave is spanned by a single triangle, a situation >
which allows no communication of that surface fluid with the interior of the droplet. In a
order to continue the simulation, better resolution must be obtained about the droplet ‘;;::
surface. Another algorithm is currently being included to allow higher resolution near ,.‘
points of large curvature at material interfaces. ¥
V. Summary and Conclusions "
This paper presented the current algorithms included in the code SPLISH, a two- .’
dimensional Cartesian Lagrangian treatment of incompressible flows with a dynamically :":«"
restructuring grid. The new rotator algorithm is an improvement on the one previously ::'.
used for conserving circulation. The residual algorithm ensures conservation of the area .!::

of cells. These algorithms together with the original SPLISH framework constitute an g
extremely flexible code for calculating incompressible flows in highly distorted geome- :'
tries or with obstacles in the flow. o
New algorithms for modelling the physical effects of viscosity and surface tension » ‘
have been added. Whereas adding the viscosity algorithm was relatively straightfor- ;
ward, adding surface tension caused a number of numerical problems. Detailed bench- ::',:‘
marks of the final algorithm selected were presented using internal capillary waves and ‘:"
a Rayleigh oscillating droplet as test problems. The surface tension algorithm, based .
on spline fits to determine curvature, allowed the droplet to oscillate many times and ::‘:
still maintain a constant period. The numerical tests on the internal capillary waves f‘.::

indicate that the surface tension algorithm produced a convergence rate which is lin- H
ear in the mesh size, whereas the basic hydrodynamic algorithms are quadratic in the 3'
mesh size for ideal meshes. The droplet oscillation test problem however indicated :
some difficulties with the spline fits for curvature when the interface becomes highly "
distorted. .&‘
i
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Previous numerical calculations of oscillating spherical droplets with surface ten-
sion and viscosity using a marker-and-cell method showed only one oscillation of a
water droplet in air [20], and thus did not give any information about the subsequent
behavior of the mode amplitudes. These calculations used 2.5 times the resolution of
our most resolved calculations. Their calculated period differed from the theoretical
period by 6% compared to our 12% for a similar initial deformation. Their viscous
calculations failed to damp as quickly as required by theory which may indicate that
they suffer from a similar problem of approximating curvatures.

We presented calculations showing how a kerosene droplet deforms and sheds vor-
tices in the wake of a shear flow. Calculations of fluid flow in and around fuel droplets
are important in the study of spray combustors. The flow patterns influence droplet

breakup, evaporation and burning rates.

Acknowledgements

The authors would like to acknowledge the support of the Air Force Office of
Scientific Research, the Air Force Wright Aeronautical Laboratories, and the Naval

Research Laboratory through the Office of Naval Research. The authors would also
like to acknowledge the helpful suggestions of Jay Boris.

K o T

4‘.0

-
e




N

;

?

References :.*

1. M. J. Fritts, and J. P. Boris, J. Comp. Phys. 31 173, (1979). '
2. M. J. Fritts, “A Numerical Study of Free-Surface Waves,” SAIC Report SAI-76- .
528-WA, Science Applications International, Inc., March, 1976 (unpublished). ¥

3. M. J. Fritts, and J. P. Boris, in Second International Conference on Numerical
Ship Hydrodynamics, edited by J. V. Wehausen and N. Salvesen (University of ‘
California, Berkley, 1977), p. 319. :'.;

4. M. J. Fritts, E. W. Miner, and O. M. Griffin, in Computer Methods in Fluids, edited ‘:‘:‘:
by K. Morgan, C. Taylor, and C. A. Brebbia (Pentech Press, London, 1980), p. 1. ::.:
5. M. J. Fritts, “Lagrangian Simulations of the Kelvin-Helmholtz Instability,” SAIC 3
Report SAI-76-632-WA, Science Applications International Inc., September, 1976 et
(unpublished). ,

6. M. H. Emery, S. E. Bodner, J. P. Boris, D. G. Colombant, A. L. Cooper, M. J. Fritts, "'
and M. J. Herbst, “Stability and Symmetry in Inertial Confinement Fusion,” NRL ':';
Memorandum Report 4947, Naval Research Laboratory, Washington, D.C., 1982 ::'::
(unpublished). o

7. M. H. Emery, M. J. Fritts and R. C. Shockley, “Lagrangian Simulation of Taylor- ‘%
Couette Flow,” NRL Memorandum Report 4569, Naval Research Labgratory, '
Washington, D.C, 1981 (unpublished). ‘:;‘.‘:

8. R. Gentry, private communication, (1965). .
9. B. J. Daly, and F. H. Harlow, “Numerical Fluid Dynamics Using the Particle-and- )
Force Method,” Los Alamos National Laboratory Report LA-3144, April, 1965 §
(unpublished). oy

10. F. H. Harlow, “Theory of the Correspondence Between Fluid Dynamics and ‘_
Particle-and-Force Models,” Los Alamos National Laboratory Report LA-2806, (g
November, 1962 (unpublished). }!

W

0 4". l“,t!.,ﬂ LA ORI ia..‘(' Al l','"‘\ USRS i' R e T A A OO e I Y LU



11. W. P. Crowley, in Proceedings of the Second International Conference on Numerical
Methods in Fluid Dynamics, Lecture Notes in Physics Vol. 8, edited by M. Holt
(Springer-Verlag, New York, 1971).

12. A. Barcilon, D. Book, J. Boris, A. Cooper, K. Haim, P. Liewer, A. Robson,
R. Shanny, P. Turchi, and N. Winsor, in Plasma Physics and Controlled Nulcear
Fusion Research, IAEA-CN-33, IAEA, Vienna, 1974, p. 567.

13. C. S. Peskin, J. Comp. Phys. 25 220, (1977).

¢ 14. M. J. Fritts, W. P._Crowley and H. Trease, editors, The Free-Lagrange Method,
Lecture Notes in Physics Vol. 238 (Springer-Verlag, New York 1985).

15. G. Strang and G. Fix, An Analysis of the Finite Element Method (Prentice-Hall,
Englewood Cliffs, New Jersey, 1973), pp. 77-78.

16. M. J. Fritts, D. E. Fyfe, and E. S. Oran, Numerical Simulations of Droplet Flows
with Surface Tension, Proceedings of ASME Workshop on Two-Phase Flows,
Phoenix, Arizona, 1982.

17. M. J. Fritts, D. E. Fyfe, and E .S. Oran, “Numerical Solution of Fuel Droplet Flows
Using a Lagrangian Triangular Mesh,” NASA CR-168263, 1983 (unpublished).

18. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergammon Press, New York,
1959), pp. 230-234.

19. B. J. Daly, J. Comp. Phys. 4 97, (1969).

20. G. B. Foote, J. Comp. Phys. 11 507, (1973).

21. C. deBoor, A Practical Guide to Splines (Springer-Verlag, New York, 1978), pp. 316-
322.

22. Lord Rayleigh, Proc. Roy. Soc. (London) 29 71, (1879).

23. R. Natarajan and R. Brown, Phys. Fluids 29 2788, (1986).

. M. A. Malcolm, STAM J. Numer. Anal. 14 320, (1977).




4l

U U Pl a P W LWL LWL W W U N Y ‘e, -V
]
[N
9
LY
N
b
."-
)
[
-. L
Table I )
16 x 16 grid ;
time last period < z? > -
0.0000 0.3061E-07 v
L™
0.6500E-03 0.1426E-07
0.1300E-02  .0013 0.2929E-07 v
‘.
0.1975E-02 0.1497E-07 i
0.2600E-02  .0013 0.2821E-07 o
LY
0.3250E-02 0.1563E-07 '
0.3900E-02  .0013 0.2711E-07 *3
0.4550E-02 0.1626E-07 "
0.5200E-02  .0013 0.2627E-07 o,
o
0.5850E-02 0.1677E-07
0.6500E-02  .0013 0.2556E-07 ~
Al
0.7150E-02 0.1718E-07 "
0.7775E-02  .001275  0.2493E-07 4_'.
0.8425E-02 0.1757E-07 ,:
0.0075E-02  .0013 0.2435E-07 N
0.9725E-02 0.1793E-07 N
0.1037E-01  .0013 0.2387E-07 3
0.1100E-01 0.1827E-07 1
0.1165E-01  .001275  0.2349E-07 i
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Table II
16 x 16 grid

time last period _ z,

0.0000 0.1500E-01
0.6250E-03 0.9974E-02
0.1325E-02 .001325 0.1486E-01
0.1975E-02 0.1046E-01
0.2600E-02 .001275 0.1463E-01
0.3275E-02 0.1064E-01
0.3900E-02 .0013 0.1423E-01
0.4550E-02 0.1078E-01
0.5225E-02 001325 0.1400E-01
0.5825E-02 0.1104E-01
0.6525E-02 .0013 0.1392E-01
0.7150E-02 0.1131E-01
0.7775E-02 .00125 0.1378E-01
0.8450E-02 0.1140E-01
0.9050E-02 .001275 0.1355E-01
0.9725E-02 0.1146E-01
0.1037E-01 .001325 0.1335E-01
0.1100E-01 0.1159E-01
0.1167E-01 .0013 0.1332E-01
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Table III
24 x 24 grid
time last period < z? >
0.0000 0.3513E-07
0.6594E-03 0.1628E-07
0.1306E-02 .00131 0.3420E-07
0.1966E-02 0.1637E-07
Table IV
24 x 24 grid
tim last period Zp
0.0000 0.1500E-01
0.6594E-03 0.1038E-01
0.1250E-02 .00125 0.1503E-01
0.1931E-02 0.1015E-01
38
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Table V

density of kerosene 0.82 g/cc
density of air 0.0013 g/cc
surface tension (STP) 30 dynes/cm
viscosity of kerosene 1.8 centipoise
viscoeity of air 0.018 centipoise
air velocity 100 or 120 m/s
initial droplet velocity 0.0 m/s

droplet radius 125 microns




Figure 1. A section of a triangular grid showing a) a material interface, b) a vertex- K

cell. \
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- (C)

N Figure 2. A test problem for conservation of circulation. a) The initial flow pattern.
i) .
)

b) The velocities after a half-time step. ¢) The velocities after the old rotator

operator is applied.
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Figure 5. The initial grid for the internal wave test problems.
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Figure 8. A composite of frames from a calculation of an » = 2 normal mode

droplet oscillation with 12 vertices around the droplet: p, = 1 g/cc, pg = 2 g/cc,
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Figure 9. A composite of frames from a calculation of an n = 2 normal mode droplet 4

oscillation with 24 vertices around the droplet. Same conditions as in Fig. 7.
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Figure 11. The period as a function of mesh size for the droplet oscillation problem.
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Figure 13. The moment < z? > as a function of time for two initializations: (1) all b

initial vertices on the Rayleigh drop; (2) initial refining vertices on the spline
interpolant. ¢
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Figure 14. The moment < z? > as a function of time in the 16 x 16 calculation.
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Figure 15. The position of the rightmost vertex, z., as a function of time in the 16 x
16 calculation.
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Figure 16. Pathlines from a calculation of air flowing past a deforming, viscous kerosene

droplet. Surface tension forces are included at the material interface. Heads of
pathlines are the current vertex positions and the tails are made up of the previous
five positions. The flow speed is 100 m/s and Re =~ 1600.
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Figure 17. Frames showing the triangular grid at the same times as shown for the Y
pathlines in Fig. 14.




¥ Va9 €

. dap tag bl a i val ¥ LA el », »,
PATHLINES S.80e107 7 1.58e10" ¢
Fa o
.8 9.1
5.50010° ¢ K IXT I

-
:

Y
)
{

19 AR T B}
* . i
MY

2.5610° ¢

§.52010° ¢

650007

1.52+10° ¢

§.52010° ¢

Figure 18. Pathlines from a calculation similar to that shown in Fig. 14, but with a

flow velocity of 120 m/s and Re =~ 2000.
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